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We propose a numerical algorithm for computing quantal dynamics, which is tailored for a generic multi-
dimensional model of low-energy dynamics, i.e., polynomially interacting oscillator system. This algorithm
evaluates symplectic integrators effectively, by using block tridiagonality of the interaction operator, and thus
accurately preserves unitarity with time. A practical advantage of this method is that high-order integrators are
easily implemented even for time-dependent parameter systems. We demonstrate the accuracy and usefulness
by applying it to af4 model.
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I. INTRODUCTION

Multidimensional quantal dynamics of nonintegrable sys-
tems is a subject of recent intense interest because experi-
mental technologies have opened the way for producing mo-
lecular Bose-Einstein condensates[1] and probing the
dynamics of molecular motion on the time scale of vibra-
tional and rotational periods[2,3]. Elucidation of the multi-
dimensional dynamics will provide a more sound basis of
controlling these atomic and molecular motions.

For computing the dynamics of these nonintegrable sys-
tems, a number of numerical methods have been developed,
which are classified roughly into three methods: the recur-
sive residue generation methodsRRGMd [4,5], the Cheby-
shev method[5,6], and the symplectic integratorsSId method
(also referred to as the exponential product method) [7–9].
The RRGM permits multidimensional computation of transi-
tion probabilities for systems that are isolated or perturbed
by monochromatic external fields. The Chebyshev method is
a sophisticated algorithm, especially suitable for multidimen-
sional systems[5]. However, the full advantage of the
method is not taken for time-dependentparameter systems
[10]. The SI method, which is a higher order generalization
of split operator method, has an advantage of being appli-
cable to time-dependent systems as easily as to time-
independent systems, over the other methods. Being opti-
mized with the use of fast Fourier transformsFFTd [5], the
resulting SI-FFT method is proved to be extremely valuable
for low-dimensional systems[10]. Unfortunately, this
method is generally not practical for systems with more than
three degrees of freedom, due to the storage and execution-
time limitations.

In this paper, we develop a simple algorithm based on the
SI method, which is tailored for a polynomially interacting
oscillators systemsPIOSd. In Sec. II, the PIOS model is in-
troduced as a generic model of multidimensional low-energy
dynamics. An example of PIOS, af4 model, is also pre-
sented with the renormalization procedure. In Sec. III, we
present our algorithm to evaluate the SI of PIOS with esti-
mating its required storage and computational costs. In Sec.

IV, the accuracy of our method is illustrated with the numeri-
cal application to thef4 model. In Sec. V, we present our
conclusion with remark on the application of our method to
eigen-energy problem.

II. PIOS AS A MODEL OF LOW-ENERGY DYNAMICS

A. Introduction of PIOS

We introduce a PIOS, which describes low energy dynam-
ics of multidimensional quantal dynamics.

Let us first consider anN-dimensional boson system with
a normalized ground state. The Hamiltonian is expanded
around the ground state

H = o
j=1

N

"v jsnj + 1
2d + o

q=3

`

Vq,

Vq = o
Os,+,,−d=q

W,+,,−p
j=1

N

saj
†d, j

+
sajd, j

−
, s1d

whereaj, aj
†, and nj s;aj

†ajd are the annihilation, creation,
and number operators ofj th mode with frequencyv j. They
satisfy the commutation relationsfaj ,ak

†g;ajak
†−ak

†aj =d j ,k.
Vq is the qth order part of the normal ordered interaction
potential with ,±=s,1

± ,,2
± , . . . ,,N

±d, , j
± ù0, and Os,+,,−d

=o js, j
++, j

−d. The coefficientsW,+,,− satisfy the reality con-
ditionsW,+,,−=W,−,,+

* , whereW* denotes the complex conju-
gate ofW. Note that stateu0l, satisfyingaju0l=0 for all j , is
the mean field approximation of the true ground state and
that number states created byaj

† are good approximations for
sufficiently low-lying eigenstates.

We now truncate the interaction termsVq at a finite order,
since lower-order terms are generally more relevant for low-
energy dynamics. For the truncated dynamics to mimic the
original dynamics of Eq.(1), the maximum orderqmax should
be even, or quantum tunneling process would destroyu0l into
lower energy, large amplitude stateskajl@1, and thus the
assumed ground state would become a metastable state. In
the following only PIOS models with stable ground states are
considered(qmax= an even number).

The PIOS model includes paradigmatic dynamical mod-
els. For example, Fermi-Pasta-UlamsFPUd b and latticef4*Electronic address: okushima@comp.metro-u.ac.jp
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models are included in the fourth order PIOSsqmax=4d. Ad-
ditionally, it effectively describes a wide range of physical
phenomena, such as intramolecular vibrational redistribution
[2,3,11,12], influence of Fermi resonance[13], and Bose-
Einstein condensation dynamics[14,1].

From the standpoint of quantum-classical correspondence,
the classical limit of a PIOS model generally belongs to a
generic class of dynamical systems, i.e., moderately chaotic
dynamical systems, which have wandering motions from
fully chaotic to quasi-integrable regular motions and vice
versa[15]. The quantal PIOS model is therefore a generic,
quantum chaotic model. Moreover, the generosity is intrinsic
because it is induced by underlying classical dynamics, in
contrast to random matrix quantum chaotic models that con-
tain random system parameters.

PIOS provides a unified frame in which multidimensional
peculiarities in nonlinear dynamics are contained. This also
leads a practical advantage of sharing programs between spe-
cific PIOS problems.

B. f4 model truncated in reciprocal space

Let us derive another PIOS model,f4 model truncated in
reciprocal space(f4 MTRS), by truncating high frequency
modes inf4 self-interacting quantum field. First, using a real
scalar fieldfsx,td and its conjugate fieldpsx,td, the Hamil-
tonian off4 self-interacting field is given by

H ; E
L

dxspḟ − Ld =E
L

dxF1

2
sp2 + f82 + m2f2d +

l

4!
f4G ,

s2d

where the system is put in a one-dimensional box of length
L. To quantize this system, we set the canonical commutation
relation between the conjugate valuables

ffsx,td,psy,tdg = i"dsx − yd,

ffsx,td,fsy,tdg = fpsx,td,psy,tdg = 0, s3d

where" is Planck’s constant over 2p.
Next, by setting the periodic boundary condition on the

box, mode valuablesqj ,pj s j = . . .−2,−1,0,1,2, . . .d are in-
troduced in reciprocal space

qjstd =E
L

dx
e−ikjx

ÎL
fsx,td, pjstd =E

L

dx
eikjx

ÎL
psx,td,

s4d

where kj ;2p j /L is the wave number ofj th mode. These
qj ,pj satisfy the reality conditionq−j =qj

†,p−j =pj
† and the

commutation relations fqj ,qlg=fpj ,plg=0 and fqj ,plg
= i" d j ,l.

Here we just keep low frequency modesj
=0, ±1, ±2, ±3, . . . , ±L, where positive integerL is a cutoff
parameter, and truncate other higher frequency modes. The
resulting s2L+1d degrees of freedom oscillator system has
the following Hamiltonian:

H = o
j=−L

L
"v j

2
saj

†aj + ajaj
†d+

l"2

4 ! L
o

j1,j2,j3,j4=−L

L d j1+j2+j3+j4,0

2Îv j1
v j2

v j3
v j4

3saj1
+ a−j1

† dsaj2
+ a−j2

† dsaj3
+ a−j3

† dsaj4
+ a−j4

† d, s5d

where annihilation and creation operatorsaj, aj
† are defined

by

aj ;
1
Î2

sq̃j + ip̃−jd, aj
† ;

1
Î2

sq̃−j − ip̃ jd, s6d

with j th mode harmonic frequencyv j =Îkj
2+m2;vskjd and

the rescaled mode variablesq̃j ;s"/v j
d1/2

qj , p̃j ;s"v jd1/2pj.
Note that compared to other lattice regularization model,

such as FPU-b, lattice f4 models, our finite dimensional
model has fewer expansion terms of interaction part. As we
see later in Sec. III, this fewer expansion terms improve the
efficiency of our numerical algorithm. Hence, this model is a
good model that can be efficiently evaluated with our
method.

Due to the noncommutability betweenaj andaj
†, however,

the normal ordered form of Hamiltonian(5) has squeezing
terms, which shows that it is not a PIOS Hamiltonian(1), as
it is. In order to elucidate this, settingV as

V = o
j1,j2,j3,j4=−L

L d j1+j2+j3+j4,0

2Îv j1
v j2

v j3
v j4

saj1
+ a−j1

† dsaj2
+ a−j2

† d

3saj3
+ a−j3

† dsaj4
+ a−j4

† d, s7d

then we expand it and classify the monomials into zeroth,
second, and fourth order polynomials ofV0,V2,andV4, re-
spectively:

V0 = 3o
j1,j2

Wj1,j1,j2,j2
, s8d

V2 = o
j

12So
j8

Wj ,j ,j8,j8Dnj

+ o
jù1

12So
j8

Wj ,j ,j8,j8Dsaja−j + H. c.d s9d

V4 = :V:, s10d

whereWj1,j2,j3,j4
=1/s2Îv j1

v j2
v j3

v j4
d and :V: is the normal

ordering ofV.
Let us now derive a PIOS Hamiltonian by applying a

basic renormalization procedure to Eq.(5). Assuming that
vRskd is the observed, renormalized frequency of wave num-
ber k that is different from bare frequencyvskd [16], we
substitutev2skd=vR

2skd−dv2skd for (5). Using the renormal-
ized annihilation and creation operators,aj

R,aj
R†, defined by

aj
R ;

1
Î2

sq̃j
R + ip̃−k

R d, aj
R† ;

1
Î2

sq̃−k
R − ip̃k

Rd s11d

with q̃j
R;f" /vRskjdg1/2qj, p̃j

R;f"vRskjdg1/2pj, the Hamil-
tonian is expressed by

H = HR + Vc, s12d
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whereHR is an operator of the same form(5) with the re-
placement ofvskd ,aj with vRskd ,aj

R, respectively, and

Vc = − o j

dv2skjd
2

"

2vRskjd
saj

Ra−j
R + aj

R†a−j
R†d

− ok

dv2skjd
2

"

2vRskjd
2aj

R†aj
R − o j

dv2skjd
2

"

2vRskjd
s13d

The condition thatVc cancels the squeezing operators in(12)
is

dv2skjd
2

"

2vRskjd
=

l

4!
6o

j8

Wj ,j ,j8,j8
R , s14d

which leads

dv2skd =
l"

4 o
j8

1

vRskj8d
. s15d

This k-independent renormalization is equivalent to the mass
renormalizationdv2skd=dm2. In addition to this, the mass
renormalization simultaneously cancels all terms inV0, and
V2. Thus, we have confirmed that the renormalized Hamil-
tonian has a PIOS form of

H = H0
R +

l

4 ! L
V4

R. s16d

In the following, we refer to this PIOS Hamiltonian as
f4 MTRS and drop the suffixesR in (16) for notational
simplicity.

III. NUMERICAL METHOD

In this section, we develop a computational method for
multidimensional PIOS dynamics.

After recalling the properties of SI that is required for our
development, we give a truncation scheme that provides ap-
proximate, finite-dimensional quantum state spaces where
wave functions are represented. Then a method for estimat-
ing SI on the truncated spaces is developed with estimation
of computational time requirement.

A. SI

The SI scheme for quantum time evolution has the theo-
retical advantage of preserving time reversal symmetry and
unitarity, and the practical advantage that programing higher
order SI is just several calls of second order SIsSId2 subrou-
tines [7]. These merits are extended to time-dependent pa-
rameter systems in[8]. We here collect these useful results,
without proof.

1. Second order SI

First, for a time-independent HamiltonianH, the time
evolution operatorUsDtd, with a small time stepDt, is given
by

UsDtd = expS−
iDt

"
HD . s17d

If H is the sum of two operators,H=A+B, the associated
second order SI,S2sDtd f=UsDtd+OsDt3dg, is given by a
product of exponentials ofA andB:

S2sDtd ; e−siDt / 2"dAe−siDt / "dBe−siDt / 2"dA, s18d

which satisfies the following time-reversibility and unitarity
conditions:

S2s− td = S2std−1, s19d

=S2std†. s20d

Note that, only when the operations of exponentials ofA and
B to any wave function are efficiently computable, asH
=Tspd+Vsqd with the SI-FFT method, Eq.(18) becomes a
practically useful expression.

Assuming operations of exponentials ofAisi =0, . . . ,rd are
efficiently computable, the second order SI for

H = A0 + A1 + A2 + ¯ + Ar s21d

is given by

S2sDtd = esx/ 2dAresx/ 2dAr−1esx/ 2dAr−2
¯ esx/ 2dA1exA0

3 esx/ 2dA1
¯ esx/ 2dAr−2esx/ 2dAr−1esx/ 2dAr ,

;F2
srdsxd s22d

wherex= iDt /".

2. Higher order SI

After Ref. [8], we here give a formal solution of fourth
and sixth order symmetric SI that are composed of several
SI2 operations.

The fourth order symmetric SI is given by the following
product of fiveS2 operations:

S4sDtd = S2sp1DtdS2sp2Dtd ¯ S2sp5Dtd, s23d

wherep1, . . . ,p5 are

p1 = p2 = p4 = p5 = 1/s4 − 41/3d,

p3 = 1 − 4p1. s24d

Similarly, the sixth order symmetric SI is composed of 14
S2 operations:

S6sDtd = S2sp1DtdS2sp2Dtd ¯ S2sp14Dtd, s25d

wherepi are

p1 = p2 = p13 = p14 = 0.392 256 805 238 773 2,

p3 = p4 = p11 = p12 = 0.117 786 606 679 681 0,

p5 = p6 = p9 = p10 = − 0.588 399 920 894 384,

p7 = p8 = 0.657 593 160 341 968 4. s26d

These and higher order SI are systematically derived via Lie
algebraic formulation in Ref.[8].
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3. SI for time-dependent Hamiltonians

We describe formulae of SI for time-dependent Hamil-
tonianHstd=A1std+A2std+¯ +Arstd, according to Ref.[8].

First, S2sDt ; td is introduced as

S2sDt;td ; exA1std/2 exA2std/2
¯ exAq−1std/2

3 exAqstd/2 exAq−1std/2
¯ exA1std/2 s27d

with x=−iDt /", which can be interpreted asDt time step SI2
operation with the virtual Hamiltonian with its parameter
values fixed at the timet.

By using this, unitary time evolutiont to t+dt with Hstd is
approximated by themth order SI:

Umst + dt,td = S2sprDt;trd ¯ S2sp2Dt;t2dSsp1Dt;t1d
s28d

wheretj = t+sp1+p2+¯ +pj−1+pjdDt andpj are the same as
those of time-independent systems:(24) and (26) for fourth
and sixth SIs, respectively.

We have seen that, even for time-dependent Hamiltonian,
higher order SI are implemented by calling SI2 subroutines
several times[7,8], which reduces total programming cost
essentially to that of SI2 subroutine programming.

B. Fock space truncation

For computing SI, we should truncate the infinite dimen-
sional state space. A finite-dimensional, computational state
space, which is suitable for low-energy dynamics descrip-
tion, is presented here.

We begin with splitting PIOS Hamiltonian into its diago-
nal and off-diagonal parts

H = HDshnjjd + lVintshaj
†,ajjd,

HDshnjjd = o
j=1

N

"v jsnj + 1
2d + o

,0

W,0,,0 p :snjd, j
0
:,

Vintshaj
†,ajjd = o

,+Þ,−

W,+,,− p saj
†d, j

+
sajd, j

−
, s29d

where parameterl is introduced as the strength of off-
diagonal coupling. The state space is the Fock spaceF,
spanned by the infinite-dimensional number stateshuhnjjl ;0
ønj ,`j of the HD-eigen states.

With a cutoff parameterEcut, an approximate, computa-
tional state spaceFcut is introduced by restricting its bases
uhnjjl with

HDshnjjd ø Ecut. s30d

To estimateEcut, let us consider the time-propagation with
the initial condition uhnjjl. Substituting expansion with the
eigen statesuEl of the total Hamiltonianuhnjjl=oE CEuEl
into

khnjjusH − kHld2uhnjjl = l2khnjjusVintd2uhnjjl s31d

leads to the relation:

o
E

uCEu2sE − kEld2 = l2khnjjusVintd2uhnjjl, s32d

which shows that probabilityuCEu2 has its meankEl=kHDl
=kHl and the dispersionlÎksVintd2l. Hence, a number state
uhn8jl that is excitable in the course of time satisfies
uHDshn8jd−HDshnjdu.lÎksVintd2l. For accurate computation,
Fcut must contain all excitable number states. Thus,Ecut
should satisfy the following inequality:

HDsn0d + lÎksVintd2l , Ecut. s33d

Note that the dimensionL of Fcut is roughly estimated to
have the scalingL,Ecut

N /N!, which is more efficient, com-
pared to that of real-space grid truncation,L,Ecut

N , which is
used, for example, in SI-FFT method. This shows that our
truncation scheme efficiently samples relevant states for mul-
tidimensional low-energy dynamics.

Note further that when the system has an additional sym-
metry, the computational state space can be divided into con-
served subspaces associated with the symmetry. This reduces
the size of dimension that must be treated at a computation.
Translational invariance inf4 MTRS model, for instance,
conserves total momentumP=o"kjnj and each subspaces
can be treated independently.

C. Algorithm for computing SI

Having set the computational state spaceFcut, we
now develop a numerical scheme for computing SI2 in it.
The development of SI2 is sufficient for our purpose as dis-
cussed in Sec. III A. In this section, nonlinear parameterl is
set to 1.

1. Decomposition of Vint into Hermitian binomials

Elementary coupling operators, composed of conjugate
terms

W,+,,− p saj
†d, j

+
sajd, j

−
+ W,+,,−

* p saj
†d, j

−
sajd, j

+
, s34d

are referred to as Hermitian binomials in this paper. The
polynomial couplingVint is the sum of a finite number of
Hermitian binomials

Vint = Vs1d
int + Vs2d

int + ¯ + Vsid
int + ¯ + VsMd

int , s35d

Vsid
int = W,+sid,,−sid p saj

†d, j
+sid sajd, j

−sid

+ W,+sid,,−sid
* p saj

†d, j
−sid sajd, j

+sid, s36d

where running numbers through the binomialssi
=1,2, . . . ,Md are introduced.

Now we use Eq.(22) with

A0 = HD, A1 = Vs1d
int , A2 = Vs2d

int , . . . , AM = VsMd
int ,

s37d

which leads to an expression of SI2:
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expH− i
Dt

"
fHD + Vs1d

int + Vs2d
int + ¯ + VsMd

int gJ
=e−isDt / 2"dVsMd

int
e−isDt / 2"dVsM−1d

int

3e−isDt / 2"dVsM−2d
int

. . .e−isDt / 2"dVs1d
int

e−isDt / "dHD

3e−isDt / 2"dVs1d
int

. . .e−isDt / 2"dVsM−2d
int

e−isDt / 2"dVsM−1d
int

3e−isDt / 2"dVsMd
int

+ OsDt3d. s38d

Here the operation expf−isDt /"dHDguFl is diagonal
in the number base representation and thus is easy to
compute. The remaining task is therefore developing a
numerical scheme for evaluating exponential operations
expf−isDt /2"dVsid

intguFl for off-diagonalVsid
int si =1,2, . . . ,Md.

2. Vint is block tridiagonal

Here we show that, with an appropriate ordering of num-
ber state bases,Vsid

int is represented as a block tridiagonal ma-
trix with zero diagonal elements. Without limiting the gener-
ality of the foregoing, we can writeVsid

int as V for notational
simplicity.

We first introduce a counterr that codes block matrices in
V with the initialization r =1. OperatingV on an arbitrary
number stateunrl;uhnj

rjl gives

Vunrl = c+fnrgunr + dnl + c−fnrgunr − dnl, s39d

wheredn=,+−,− andc±fnrg are nonzero matrix elements of
V. By repeated application ofV, a series of states is gener-
ated:

hunr + smindnl, . . . ,unr − dnl,unrl, . . . ,unr + smaxdnlj,

s40d

wheresmax andsmin are, respectively, the largest and smallest
integers such thatun+sdnlPFcut. We write smax−smin+1 as
Lr and theLr-dimensional subspace spanned by the series of
states asFr.

With unrssdl;unr −ss−smin+1ddnl, the projection operator
Pr onto Fr is given by

Pr = o
s=1

Lr

unrssdlknrssdu. s41d

Pr satisfies

s1 − PrdVPr = 0. s42d

This shows that the operation ofV in Fr is represented by a
Lr 3Lr matrix Br, whosess,s8dth elementsBrds,s8 is given by
knrssduVunrss8dl. Moreover, from (39) only sBrds,s+1 and
sBrds+1,s for s=1, . . . ,Lr −1 are nonzero elements and thusBr

is a tridiagonal matrix with zero diagonal elements.
Next we reset the counterr → r +1, choose another num-

ber state that is not contained inF1+ . . . +Fr−1, and construct
sPr ,B

rd by the earlier procedure This is repeated untilF1

+ . . . +Fr =Fcut is fulfilled.
Finally, the total procedure generatessPr ,B

rd for r
=1,2, . . . ,Nb, whereNb is the number of the block matrix

sor=1
NB Pr = Id. This shows that matrix representation ofV in

the number bases can be permuted into the direct sum ofBr.

3. Efficient operation of Hermitian binomial exponentials

Here continues the notationV=Vsid
int. With Br, unrssdl, and

column vectorFr, sFrds;knrssd uFl ,ss=1,¯ ,Lrd, exVuFl
is given by

exVuFl = o
r=1

Nb

o
s=1

Lr

unrssdlsexBr
Frds, s43d

wherex=−iDt / s2"d.
We compute the coefficient vectorexBr

Fr by using a di-
agonal matrix with eigenvalues ofBr and the associated di-
agonalizing matrixSr, as

Fr: = SrF
r, Fr: = expsxDrdFr, Fr: = Sr

TFr . s44d

In order to efficiently compute(44), it is important to
compute all linearly independentDr and store them before-
hand in memory, because computingDr via general numeri-
cal schemes(such as, the QR method) require repeated ma-
trix decompositions until the convergences and the
computational efforts are much larger than those of matrix
multiplications in(44), ,Lr

2. Note that for matrices withLr
ø5, Dr are not necessary to be stored, since their analytic
expressions are obtained straightforwardly.

Then the required computation for(44) in runtime is as
follows: Sr is first generated with the computational effort
,Lr

2 with use ofDr and tridiagonality ofBr and then matrix
multiplications(44) are evaluated with,Lr

2.
Note that, since different blocks in(44) can be comput-

able independently, the block diagonal matrix ofVf=Vsid
intg

grants an inherent parallelism for the evaluation.

4. Total SI2 procedure and the computational cost

We here summarize our SI2 procedure. Figure 1 shows the
flowchart of one time step propagation, where “UnionDr”
denotes storing in memory all linearly independentDr of
Lr ù6 throughVsid

int si =1,2, . . . ,Md and “HD evolution” op-
eration of one time step propagation with diagonal Hamil-
tonianHD.

Now we show that the computational cost for one time
step SI2 procedure depicted in Fig. 1 scales asML1+1/D,
whereM is the number of binomials contained inVint andD
is the effective dimensionN− I for N degrees of freedom
system with a numberI of conserved quantities. First, the
average size of block matrices,kLrl, in Vsid

int is approximately
given by

kLrl = o
1

Nb

Lr/Nb , L1/D s45d

and thus effective number of the average matrix is estimated
by ,L / kLrl. Hence, the average computational cost for
expsVsid

intduFl via Eq. (44), is approximately estimated to be
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L

kLrl
kLrl2 ,

L

L1/D sL1/Dd2 = L1+1/D. s46d

Thus, the total computational cost required for the SI2 in Fig.
1 is ML1+1/D [= Eq. (46) timesM].

Note that our numerical time propagation scheme pre-
sented here is effective, compared to the other naïve
schemes. For example, the time propagation schemes via di-
agonalization of total Hamiltonian typically cost at,L3.
This efficiency is because SI is decomposed into small size
matrix multiplications whose dimensions are much less than
state space dimensionL.

IV. NUMERICAL RESULT: THE ACCURACY
AND CONVERGENCE

In this section, we show the accuracy of our method de-
veloped in the previous section, usingf4 MTRS with l=1
introduced in Sec. II.

Recall that we have introduced two approximations into
our method: one is the time stepdt and the other is the

energy cutoffEcut to introduce computational state space
Fcut. Our scheme should then satisfy the following conver-
gences:(1) With a fixed Ecut, mth order SI converges with
Osdtmd accuracy asdt→0; and(2) After this dt→0 limit, the
wave function that is accurate inF is given by taking the
limit of Ecut→`.

A. The dt convergence

By using our method underEcut=32 with various time
stepsdt, wave functions are computed. The initial state is a
normalized state inFcut, whose probabilities for the number
states are random numbers from a uniform distribution and
the phases are random numbers from the uniform distribu-
tion in f0,2pd. Now we study the consistency of our method
with the following three indicators of accuracy: energy fluc-
tuationDE; difference to the exact wave function,d1; change
caused by replacement ofdt with dt/2, d2.

1. Energy fluctuation

Since all the parameters included in thisf4 MTRS Hamil-
toniansl=1d are constant, the expectation value for the total
energy is conserved. Hence, we measure the accuracy of our
method, by the energy deviation from the initial expectation
value

DE = ukt;SIm,dtuHut;SIm,dtl − kt = 0uHut = 0lu, s47d

whereut=0l denotes the initial wave function andut ;SIm,dtl
the wave function at a timet computed viamth order SI with
dt timestep.

Figure 2 plotsDE against t, for f4 MTRS with three
degrees of freedomsN=3d, where second order schemes are
used withdt=2−4,2−5,2−6,2−7,2−8,2−9. This shows that after
the transient increase, eachDE remains nearly constant, with
small fluctuations around the average. Asdt approaches zero,
DE approaches zero consistently with the order of SI,m, for
sufficiently smalldt:

DE . Asdtdm, s48d

whereA is a constant depending onm.

FIG. 1. Total procedure of SI2. Nb is the number of block ma-
trices in V=Vsid

int. See Eq.(44) for operationsSr
TFr, expsxDrd, and

SrF
r, wherex=−iDt / s2"d.

FIG. 2. DE as a function of time t. From the top dt
=2−4,2−5,2−6,2−7,2−8,2−9. Fitting DE of dtø2−6 with Eq. (48)
givesm.2. Eq. (48) is similarly confirmed up to sixth order SI.
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We have thus numerically confirmed that energy conser-
vation is recovered in thedt→0 limit, consistently with the
order of SI. The accuracy of the other observables is, how-
ever, not yet clarified. To elucidate this, we should proceed to
study the accuracy of the wave functions.

2. Difference from the exact wave function

We use the differenced1 betweenut ;SIm,dtl and the exact
wave functionut ;exactl, as an indicator for the accuracy of
wave function

d1 = i ut;exactl − ut;SIm,dtli, s49d

where vector normi ufli is defined byÎkf u fl. For a timet
=Ndt, mth order SI has

Ustd = fSmsxdgN + tOsdtmd, s50d

where Ustd=UsdtdN and Usdtd=Smsxd+Osdtm+1d are used.
Multiplying both sides of Eq.(50) by ut=0l leads

ut;exactl = ut;SIm,dtl + tOsdtmd. s51d

From this, for a fixedt, d1 depends ondt as follows:

d1 , Osdtmd. s52d

To confirm Eq.(52) numerically, we computeut ;SIm,dtl
by applying our first, second, and fourth order method tof4

MTRS with three degrees of freedomsN=3d, while ut ;exactl
is given by

ut;exactl = o
E

uEl e−isE/"dtkEut = 0l, s53d

where eigenenergyE and the associated eigenstateuEl are
computed via numerical diagonalization of Hamiltonian ma-
trix.

Figure 3 plotsd1 at t=50 as a function ofdt. This shows
that all orders of our scheme converge to the exact integrator
asdt approaches zero. In addition, the theoretical estimation
of Eq. (52) is numerically reproduced. These show the actual
utility of our numerical method.

We have confirmed the usefulness of our method inf4

MTRS with threedegrees of freedom. However,d1 is hard to
compute in systems with more than three degrees of free-
dom, because diagonalization of Hamiltonian matrix in Eq.
(52) becomes difficult in such a high dimensional system.

3. Change of wave function induced by dt\dt/2

To study the accuracy of our method in more degrees of
freedom systems, we introduce the following indicator:

d2 = Iut,SIm,dtl − Ut,SIm,
dt

2
LI . s54d

This measures the change of wave function induced at timet,
by the replacement ofdt→dt/2. At a fixed timet, d2 de-
pends ondt as

d2 = O„dtm − sdt/2dm
… = Osdtmd, s55d

which is easily derived from Eq.(51).
Let us first confirm Eq.(55) through the numerical results

of f4 MTRS with three degrees of freedom. Figure 4 plotsd2
at t=50, againstdt. The dt-dependency(55) is clearly seen
from first, second, fourth, and sixth order SI results in the
figure, although sixth order SI results stop decreasing atd2
,10−10, because of the round-off error.

Having confirmed the usefulness of the indicatord2, we
now apply this consideration to the higher dimensional
systems. In Fig. 5,d2 of second order SI forf4 MTRS with
five, and seven degrees of freedom are plotted against time
stepdt, which shows cleardt-dependence(55). In addition,
we have confirmed the dependence(55) for the higher order
SI (m=4,6) in the same way.

In this subsection, we have numerically confirmed that
our scheme, with a fixed computational Fock space, con-
verges to the accurate result as time stepdt→0, for multidi-
mensional systems with up to seven degrees of freedom,
where the convergences are consistent with the SI orders.

FIG. 3. Logarithmic plot ofd1 of first, second, and fourth order
SI with time t=50 againstdt. Symbolsj, P, andm are results of
first, second, and fourth order SI, respectively. The solid lines are
fitting functionsd1=Amdtm via fitting parametersAm for m=1,2,4.

FIG. 4. d2 of f4 MTRS with three degrees of freedom as a
function ofdt. Symbolsj, P, m, ands are results of first, second,
fourth, and sixth order SI, respectively. The solid lines are fitting
functionsd2=Amdtm via fitting parametersAm for m=1,2,4,6.
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B. The Ecut convergence

We now confirm that computed wave functions with our
method approach correct wave functions inF, in the limit of
cutoff parameterEcut→` sFcut→Fd.

To check this, we introduce an indicator,d3, that shows
acquiring accuracy of wave function inF, by approaching
zero. First, note that, as we saw in the previous subsection,
an approximate wave function,ut ;e ,Ecutl, in Fcut with e ac-
curacy is computable by using any SI wave function
ut ;SIm,dt,Ecutl, which satisfies the following inequality:

i ut;SIm,dt,Ecutl − ut;exact,Ecutli ø e, s56d

where argumentsEcut are appended to specify the computa-
tional state state. Then, by usingut ;e ,Ecutl, an indicatord3 is
introduced as

d3 = i ut;e,Ecutl − ut;e,Ecut + 1 li. s57d

Namely, whend3øe are satisfied for sufficiently largeEcut,
then this guarantees the acquisition of a wave function inF
with e-order accuracy

Let us numerically confirm this inequality. Figure 6 shows
d3 of f4 MTRS with three degrees of freedom, againstEcut.

The initial state has expansion coefficients that are uniformly
distributed aroundH0shnjjd,10 ande is set as 10−5. This
clearly shows thatd3 exponentially converges asEcut→`.
Additionally, we have confrmed that, regardless of the details
of initial states,d3 exponentially converges to zero even
whenf4 MTRS have five seven degrees of freedoms.

In this section, we have numerically confirmed that our
scheme exponentially converges to the accurate time evolu-
tion in the limit of Fcut→F, for f4 MTRS with up to seven
degrees of freedom. Even for other systems,d3 are expected
to converge atEcut→`, only if they classically have
bounded equienergy surfaces in phase spaces at arbitrary to-
tal energies. The convergence would depend on the details of
the system. For example, it could differ from exponential
convergence.

V. CONCLUSION AND REMARK

In this paper, we have presented a method for computing
quantum dynamics of PIOS. This model provides a basis of
crosscutting analysis for multidimensional low-energy dy-
namics from paradigmatic dynamical models, such as FPU-b
and latticef4, to physical systems, such as intramolecular
vibration redistribution and Bose-Einstein condensation. We
have presented details of renormalization procedure for a
PIOS model,f4 MTRS.

Our method is based on the SI scheme, and thus preserves
time reversal symmetry and unitarity. Furthermore, it has a
practical advantage that higher order SI is easily imple-
mented by several calls of SI2 subroutines. This advantage is
available even for the time-dependent Hamiltonian system,
which is notable because this property is indispensable, es-
pecially for analysis of physical systems under external
strong fields and/or random perturbations.

In order to effectively evaluate the SI, our method takes
advantage of the block tridiagonality of binomial terms in the
polynomial interaction. The computational cost for one step
SI2 is ,L1+1/D with the truncated space dimensionL and
effective dimensionD. This method is more efficient for
multidimensional systems, compared to the existing method,
such as diagonalization method of Hamiltonian matrix and
SI-FFT method. Furthermore, this procedure grants an inher-
ent parallelism.

In the last section, the accuracy of our method is illus-
trated by removing two cutoffs, time step sizedt and trunca-
tion Fcut of Fock spaceF. We have confirmed the conver-
gence below:(1) For a fixedFcut, an error of wave function
converges asdt→0, consistently with the order of SI.(2)
The computed wave function, accurate inFcut, converges to
the correct wave function inF, asFcut approachesF. These
show that we have actually constructed an accurate numeri-
cal scheme for computing quantal dynamics of multidimen-
sional PIOS models.

Finally, we here add a remark on the applicability of our
method on eigenvalue problem. Repeated operation offsHd
=H exps−bHd makes any state vector converge to the eigen-
state that has an eigenenergy nearest to energy 1/b, for a
HamiltonianH with nonnegative eigenenergy. Note that op-
eration exps−bHd is efficiently computable by using our

FIG. 5. Plot ofd2 for five, seven degrees of freedomf4 MTRS
with second order SIsm=2d, againstdt. Symbols3 ands are for
five and seven degrees of freedom, respectively. The solid line is
,dt2 for eye guidance.

FIG. 6. d3 vs Ecut. The solid line is a fitted function
expsa+bxd with a=5.09,b=−0.45.
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time-propagation method with replacement of time with
imaginary time. We have thus obtained a numerical scheme
for eigenvalue problem that enables us to compute the eigen
state with an eigenenergy adjacent to an arbitrary energy. For
(quasi-)degenerate eigenenergy systems, standard tech-
niques, such as the Rayleigh-Ritz method[17], would be
useful to accelerate the convergence. We further expect that
our method is directly applicable for recently developed, so-
phisticated time-domain approaches to calculate various

physical quantities[18,19]. We hope that this method will
improve our understandings of multidimensional quantal dy-
namics.
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