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Computational method for multidimensional quantal dynamics
of polynomially interacting oscillator systems
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We propose a numerical algorithm for computing quantal dynamics, which is tailored for a generic multi-
dimensional model of low-energy dynamics, i.e., polynomially interacting oscillator system. This algorithm
evaluates symplectic integrators effectively, by using block tridiagonality of the interaction operator, and thus
accurately preserves unitarity with time. A practical advantage of this method is that high-order integrators are
easily implemented even for time-dependent parameter systems. We demonstrate the accuracy and usefulness
by applying it to a¢* model.
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I. INTRODUCTION IV, the accuracy of our method is illustrated with the numeri-

- )

Multidimensional quantal dynamics of nonintegrable sys-ca application to thes” model. In Sec. V, we present our
tems is a subject of recent intense interest because expefR2nclusion with remark on the application of our method to
mental technologies have opened the way for producing mcgi9en-energy problem.

lecular Bose-Einstein condensat¢s] and probing the Il. PIOS AS A MODEL OF LOW-ENERGY DYNAMICS
dynamics of molecular motion on the time scale of vibra-

tional and rotational periodi2,3]. Elucidation of the multi- A. Introduction of PIOS

dimensional dynamiCS will prOVide a more sound basis of We introduce a P|OS, Wh|Ch describes |OW energy dynam_
controlling these atomic and molecular motions. ics of multidimensional quantal dynamics.

For computing the dynamics of these nonintegrable sys- | et us first consider aN-dimensional boson system with

tems, a number of numerical methods have been developeg, normalized ground state. The Hamiltonian is expanded
which are classified roughly into three methods: the recuraround the ground state

sive residue generation methdBRGM) [4,5], the Cheby-

N 0
shev method5,6], and the symplectic integrat¢8l) method _ 1
(also referred to as the exponential product metHae9]. H= Ehwi(nj * 2) * q%vq’
The RRGM permits multidimensional computation of transi-
tion probabilities for systems that are isolated or perturbed N
gyS?or]oghromat|c external f|eld§. The Qhebyshev m.et.hod is Vy= S We*,rH (ajT)ej (aj)“i ’ (1)
phisticated algorithm, especially suitable for multidimen- ot £)=q =1

sional systemg[5]. However, the full advantage of the
method is not taken for timdependenparameter systems wherea;, a,-T, andn; (Ea,-Taj) are the annihilation, creation,
[10]. The SI method, which is a higher order generalizationand number operators ¢th mode with frequencyy;. They

of split operator method, has an advantage of being applisatisfy the commutation relatiorfsy,a]=a,al-afa;= g, \.
cable to time-dependent systems as easily as to timeY, is the gth order part of the normal ordered interaction
independent systems, over the other methods. Being optpotential with ¢X=(¢7,€5,...,{y), {5}-”20, and O(*,¢7)
mized with the use of fast Fourier transfoiiFT) [5], the =2j(€j++€j‘). The coefficientd,+ - satisfy the reality con-

*

resulting SI-FFT method is proved to be extremely valuableyitions W+ =W, whereW" denotes the complex conju-

for Iowjdimensional systems[lO]. Unfortuna_tely, this gate ofW. Note that staté0), satisfyingaj|0>:0 for all j, is
method is generally not practical for systems with more thafhe mean field approximation of the true ground state and

three degrees of freedom, due to the storage and executiofat number states created ahﬁ/are good approximations for

time limitations. _ , sufficiently low-lying eigenstates.

In this paper, we develop a simple algorithm based on the  \ve now truncate the interaction terrds at a finite order,
S| method, which is tailored for @ polynomially interacting gjnce lower-order terms are generally more relevant for low-
oscillators systeniPI0S. In Sec. I, the PIOS model is in-  gnergy dynamics. For the truncated dynamics to mimic the
troduced as a generic model of multidimensional Iow-energ)brigina| dynamics of Eq(1), the maximum ordeg,., should
dynamics. An example of PIOS, &' model, is also pre-  pe even, or quantum tunneling process would degopinto

sented with the renormalization procedure. In Sec. lll, Weower energy, large amplitude statém)>1, and thus the

present our algorithm to evaluate the Sl of PIOS with esti-yqqmed ground state would become a metastable state. In

mating its required storage and computational costs. In Segg following only PIOS models with stable ground states are
consideredgmna= @n even number
The PIOS model includes paradigmatic dynamical mod-
*Electronic address: okushima@comp.metro-u.ac.jp els. For example, Fermi-Pasta-Ulgf@PU) B8 and lattice¢*
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models are included in the fourth order PIQ§,,,=4). Ad- A , 2 A S v i
ditionally, it effectively describes a wide range of physical H= > ﬁ_wl(ajTaj +aja-T)+ ¥ > —2se]
phenomena, such as intramolecular vibrational redistribution == 2 AL sl 2V 0),0,0,,0;,
[2,3,11,12, influence of Fermi resonandd.3], and Bose-
Einstein condensation dynamifs4,1].

From the standpoint of quantum-classical correspondenceyhere annihilation and creation operatasa’ are defined
the classical limit of a PIOS model generally belongs to apy
generic class of dynamical systems, i.e., moderately chaotic
dynamical systems, which have wandering motions from
fully chaotic to quasi-integrable regular motions and vice
versa[15]. The quantal PIOS model is therefore a generic, _ s
quantum chaotic model. Moreover, the generosity is intrinsiavith jth mode harmonic frequenay; = Vk/+n?= w(kj) and

e . . . . . ~ 172" ~
because it is induced by underlying classical dynamics, irthe rescaled mode varlablqcr,z(ﬁ/wj) qj,ij(ﬁwj)llzpj.
contrast to random matrix quantum chaotic models that con- Note that compared to other lattice regularization model,
tain random system parameters. such as FPLB, lattice ¢* models, our finite dimensional

PIOS provides a unified frame in which multidimensional model has fewer expansion terms of interaction part. As we
peculiarities in nonlinear dynamics are contained. This alsgee later in Sec. Ill, this fewer expansion terms improve the
leads a practical advantage of sharing programs between spefficiency of our numerical algorithm. Hence, this model is a

T i T T
X(ay, +a )(ay, +a )(ay, +a )(a, +a,), (5

1 1 ~
g =—@+ipy), a=—7=@,;-ip, (6)
V2 V2

cific PIOS problems. good model that can be efficiently evaluated with our
method.
B. ¢* model truncated in reciprocal space Due to the noncommutability betweapanda}“, however,

) 4 . the normal ordered form of Hamiltoniai®) has squeezing
Let us derive arllother PIOS modéli; model truncated in  tarms, which shows that it is not a PIOS Hamiltonin, as
reciprocal space(¢® MTRS), by truncating high frequency i is In order to elucidate this, setting as
modes ing* self-interacting quantum field. First, using a real

fca_lar fiizld:ﬁ(x,l;). a}[nd itf_ corfljul?jgte ﬁ.EIdT()é’t)’ the Hamil- ve % 8 iy g4 @ +al o sl )
onian of ¢* self-interacting field is given = 9 i\ j
d) g g Y ind2dzismA 2\ wjlezszwj4 ' . 2 2
- 1 A T T
H= f dx(mp— L) = f dx{i(ﬂh @'2+mPg?) + Z¢4 , X(aj,+ay ) (ay, +as), 7
L L :

then we expand it and classify the monomials into zeroth,
) second, and fourth order polynomials 6§, V,,andV,, re-

where the system is put in a one-dimensional box of lengtﬁ;pectwely:
L. To quantize this system, we set the canonical commutation Vo=32, Wi gy (8)
relation between the conjugate valuables ini2

[$(x,1), 7y, D] =1 3(x-y), VES 12(2 wj,j,,.,,j,)nj

i i’
x,1), oy, )] = [7(x,t), 7(y,t)] = 0, 3
[p(x,1), p(y,1)] = [m(x,1), 7(y,1)] ) +2 12(2\,\/]_’1,]],1],)(61],&]+H_C_) )

where# is Planck’s constant overm2 =ty

Next, by setting the periodic boundary condition on the
box, mode valuables;,p; (j=...-2,-1,0,1,2,.).are in- Va=1Ve, (10)
troduced in reciprocal space

whereW, ; i ;,=1/(2ywj o) 0 o)) and V: is the normal
ikix ik x ordering ofV.
e’ €' . I .
qj(t):f dx——(x,1), pj(t):f dx—m(x,t), Let us now derive a PIOS Hamiltonian by applying a
L VL L VL basic renormalization procedure to E&). Assuming that

(4) wgr(K) is the observed, renormalized frequency of wave num-
ber k that is different from bare frequency(k) [16], we
wherek;j=2mj/L is the wave number ofth mode. These substitutewz(k):wﬁ(k)—&oz(k) for (5). Using the renormal-
q;.p; satisfy the reality conditiorg_;=q,p_j=p/ and the ized annihilation and creation operatoa$, a]RT, defined by
commutation relations [q;,q]=[p;,p]=0 and [q;,p]

: 1 1
=if & . R_ _— =R, =R Rt _— — =R _;i=R
j | a'=—=@@+ip5), a'=-=@%-P (1D
Here we just keep Ilow frequency modeg ' \5 ' “ J \E : s

=0,+1,+2,+3,...,#\, where positive integeA is a cutoff L =R N2 wR_ N2, -
parameter, and truncate other higher frequency modes. T Vgth 9 _[ﬁ/wR(kJ)j bql’ Py =[hwr(k)]p;, the Hamil
resulting (2A+1) degrees of freedom oscillator system has onian 1S expressed by

the following Hamiltonian: H=HR+V,, (12
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where HR is an operator of the same for(®) with the re- If H is the sum of two operator$]=A+B, the associated

placement ofw(k),a; with wR(k),a]R, respectively, and second order SIS,(At) [=U(At)+O(At%)], is given by a
sa?k)  # product of exponentials ok andB:

Vo=- 3, S (@ + )

2 ZwR(kj) ja +a Sz(At)Ee—(iAI/Zﬁ)Ae—(iAt/h)Be—(iAt/Zh)A’ (18)

S’k) S’(k) which satisfies the following time-reversibility and unitarity
s 2(k) 2= S 2(k) hich satisfies the following ti ibili d unitari
- — = o4 a’ — . —_— it .
k 2 20g(K;) i i 2 2wgk) conditions:
(13 S(-0=S07, (19
The condition thaV¥/, cancels the squeezing operatorgif
S¥(k) & \ Note that, only when the operations of exponentialé aind
—1‘2 20nk) =562 V\ffj,jr,jn (14 B to any wave function are efficiently computable, tls
R Ly =T(p)+V(q) with the SI-FFT method, Eq18) becomes a
which leads practically useful expression.
N 1 Assuming operations of exponentials/&fi=0, ... r) are
Sw?(K) = 72 ) (15) efficiently computable, the second order Si for
. WRKr
e H=Ag+ Apt Agt o +A (21)
This k-independent renormalization is equivalent to the mass_ . b
renormalizationdw?(k)= om?. In addition to this, the mass 'S 9'V€N BY
renormalization simultaneously cancels all term3/j and S,(At) = e/ DAg(x/ A 16/ DA 2. .. g(x/2) Ao
V,. Thus, we have confirmed that the renormalized Hamil-
tonian has a PIOS form of x (/A1 g/ A6/ DA1g(x/ DA
R AR =0
H=Hg+ Ve (16) =F;'( (22
. . ) o wherex=iAt/#.
In the following, we refer to this PIOS Hamiltonian as
¢* MTRS and drop the suffixeR in (16) for notational 2. Higher order SI

simplicity.
plcty After Ref. [8], we here give a formal solution of fourth

and sixth order symmetric Sl that are composed of several
Sl, operations.
In this section, we develop a computational method for The fourth order symmetric Sl is given by the following

IIl. NUMERICAL METHOD

multidimensional PIOS dynamics. product of fiveS, operations:
After recalling the properties of Sl that is required for our B
development, we give a truncation scheme that provides ap- Sy(AD) = Sy(p1ADS(PAL) -+ S(psAt), (23

proximate, finite-dimensional quantum state spaces whergherep,, ... ps are

wave functions are represented. Then a method for estimat-

ing Sl on the truncated spaces is developed with estimation P1=Pp=Pg=Ps=1/(4 - 4'3),
of computational time requirement.

ps=1-4p;. (29

Similarly, the sixth order symmetric Sl is composed of 14
The SI scheme for quantum time evolution has the theos, gperations:

retical advantage of preserving time reversal symmetry and

unitarity, and the practical advantage that programing higher Ss(At) = Sy(p1ADSy(P2AL) - - - Sy(p1sAl), (25
order Sl is just several calls of second ordel(Sl), subrou- wherep; are

tines[7]. These merits are extended to time-dependent pa- '

rameter systems ifB]. We here collect these useful results, P1 =P, = P13= P14=0.392 256 805 238 773 2,
without proof.

A. S

1. second order S Pz =pPs=P11=P12=0.117 786 606 679 681 0,

First, for a time-independent Hamiltoniad, the time Ps = Pe = Po = P1o= — 0.588 399 920 894 384,
evolution operatotJ(At), with a small time stept, is given
by P, = pg = 0.657 593 160 341 968 4. (26)
iAt These and higher order Sl are systematically derived via Lie
U(AD) =expg - —H |. 1 inc higher orde y y
(ay ex;{ ) (7 algebraic formulation in Ref8].
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3. Sl for time-dependent Hamiltonians > |Ce2(E - (E)2 = A&{n:H (V™M Z{n:}y (32)
i i/
We describe formulae of Sl for time-dependent Hamil- E
tonian H(t) = A4 (t) +A,(t) +--- +A,(t), according to Ref[8].

First, S,(At:1) is introduced as which shows that probabilityCg|? has its mearE)=(HP)

=(H) and the dispersiom\,((vim)Z). Hence, a number state
Sy(At;t) = @h2 A2 .. XA (D/2 [{n'}) that is excitable in the course of time satisfies
w @AYD/2 @XA1(D/2 . .. XA (/2 27) IHP({n'}) =HP({n})|=\\{((V™)?). For accurate computation,
Feout must contain all excitable number states. ThESy

with x=—iAt/#, which can be interpreted ag time step SJ should satisfy the following inequality:

operation with the virtual Hamiltonian with its parameter

values fixed at the time HP(NY) + M{(VM)?2) < Ege (33

By using this, unitary time evolutionto t+dt with H(t) is

approximated by thenth order S: Note that the dimensioh of F is roughly estimated to

have the scaling.~ E},/N!, which is more efficient, com-
U (t+dtt) = Sy(p,At;t,) - -+ Sy(poAt;t,)S(p;At;ty) pared to that of real-space grid truncatian; E),, which is
(28) used, for example, in SI-FFT method. This shows that our
truncation scheme efficiently samples relevant states for mul-
wheretj=t+(p;+p,+- - +p;_1+pj)At andp; are the same as tidimensional low-energy dynamics.
those of time-independent systeni4) and (26) for fourth Note further that when the system has an additional sym-
and sixth Sls, respectively. metry, the computational state space can be divided into con-
We have seen that, even for time-dependent Hamiltoniarserved subspaces associated with the symmetry. This reduces
higher order S| are implemented by calling, Subroutines  the size of dimension that must be treated at a computation.
several timeq7,8], which reduces total programming cost Translational invariance im* MTRS model, for instance,
essentially to that of S$lsubroutine programming. conserves total momentuf@=2%k;n; and each subspaces
can be treated independently.

B. Fock space truncation ) )
C. Algorithm for computing Sl

For computing SI, we should truncate the infinite dimen- i .
sional state space. A finite-dimensional, computational state Having set the computational state spadg,, we

space, which is suitable for low-energy dynamics descripD@W develop a numerical scheme for computing Bl it.

tion, is presented here. The development of $lis sufficient for our purpose as dis-

We begin with splitting PIOS Hamiltonian into its diago- cussed in Sec. Il A. In this section, nonlinear paramates
nal and off-diagonal parts setto 1.

H= HD({nj}) + )\Vi”t({ajT,aj}), 1. Decomposition of }; into Hermitian binomials

N Elementary coupling operators, composed of conjugate
0 terms
HP(n}) = > ﬁwj(nj + %) + 2 Weopo [ ] (i,
1= 0 * - ; - +
! Wer - [T @)% (2)5 +W. - IT (@) (8, (34

Vi({al,ah) = > We+,e—1_[(c':1;r)€i+ (@), (29  are referred to as Hermitian binomials in this paper. The
e polynomial couplingV™ is the sum of a finite number of

where parametei is introduced as the strength of off- Hermitian binomials

diagonal coupling. The state space is the Fock sp&ce

int — y sint int , ... int .. int
spanned by the infinite-dimensional number stdtés});0 VIV +V + o # Vo * o+ V), (35)
<n, <} of the HP-eigen states.
_ With a cutoff parameteE,, an approximate, computa- Vl(r;)t:v\/{+ 0-) IT (aj‘r)fj (i) (aj)fj (i)
tional state spacé . is introduced by restricting its bases ) .
|{nj}> with + Wg+(i)’g—(i) H (a]jr)ej ® (aj)(j (I): (36)
HP({n}}) < Ecue (30)

where running numbers through the binomial§
To estimateE,,,;, let us consider the time-propagation with =1,2, ... M) are introduced.
the initial condition|{n;}). Substituting expansion with the ~ Now we use Eq(22) with
eigen stategE) of the total Hamiltonian|{n;})=2¢ C¢|E) _ _ .
into Ao=HP, A=V, A=VE, ..., Au=V,
AnI(H = D) = Nl v™ing) - (3D (37)

leads to the relation: which leads to an expression of,SlI

016705-4
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At i
i D t
exp{—|g[H +V(D ]}

— it/ 2m)vint
o (At/Zh)Vi(T)e—i (At/#)HP

+ Vint

int
Vit o+ Viw

mei(at/2m)vi_y)
x e A/ 2)Viig
wei(at /2fi)Vi(T)_ eilat /Zﬁ)Vm_z)e—i(At /208)Vi s,

int

x e (A/ 20V + O(A). (39)

Here the operation ekpi(At/#)HP]|®) is diagonal

in the number base representation and thus is easy to

agvherex: -iAt/(2h).

compute. The remaining task is therefore developing
numerical scheme for evaluating exponential operation
exd~i(At/2h)Viy)]|®) for off-diagonal V() (i=1,2,... M).

2. Vit is block tridiagonal

Here we show that, with an appropriate ordering of num-

ber state baseS/,i(?)t is represented as a block tridiagonal ma-

trix with zero diagonal elements. Without limiting the gener-

ality of the foregoing, we can writtsa/i(ri‘)t asV for notational

simplicity.
We first introduce a counterthat codes block matrices in
V with the initializationr=1. OperatingV on an arbitrary
number statgn’) = {n{}) gives
V|n") =c[n"]|n" + dn) + c[n"]|n" = én), (39

wheredn=¢*-¢~ andc*[n"] are nonzero matrix elements of
V. By repeated application of, a series of states is gener-
ated:

{In" + spindn), ... [n" = aon),|n), ... [n" +Spa0n)},
(40)

PHYSICAL REVIEW E 70, 016705(2004)

(=N8 P,=I). This shows that matrix representation \6fin
the number bases can be permuted into the direct suBh. of

3. Efficient operation of Hermitian binomial exponentials

Here continues the notatidm:\/i(’i‘)t. Wwith B, |n'(s)), and
column vector®', (®"),=(n"(s)|®),(s=1,---,L,), VD)
is given by

Np Ly

V)= X n'(s))(eC D),

r=1s=1

(43

We compute the coefficient vectert @' by using a di-
agonal matrix with eigenvalues &, and the associated di-
agonalizing matrixS, as

®=SP',

In order to efficiently computg44), it is important to
compute all linearly independeiit’ and store them before-
hand in memory, because computib§ via general numeri-
cal schemesgsuch as, the QR methpdequire repeated ma-
trix decompositions until the convergences and the
computational efforts are much larger than those of matrix
multiplications in(44), ~Lr2. Note that for matrices with,,
<5, D" are not necessary to be stored, since their analytic
expressions are obtained straightforwardly.

Then the required computation fe44) in runtime is as
follows: S is first generated with the computational effort
~Lr2 with use ofD" and tridiagonality of8" and then matrix
multiplications(44) are evaluated with- Lr2.

Note that, since different blocks i#4) can be comput-
able independently, the block diagonal matrix ‘cﬂ:V'('i‘)‘]

@' =expxD)®', ®:=SP". (44

wheres,, ands,, are, respectively, the largest and smallestdrants an inherent parallelism for the evaluation.

integers such thgh+son) e F,.. We Write Spax—Smint1 as

L, and theL,-dimensional subspace spanned by the series of

states asF'.
With |[n"(s)) =|n"=(s=Smin+ 1) dn), the projection operator
P, onto F" is given by

Lr
P, =2 In"(9Kn"(9)]. (41)
=1

P, satisfies
(1-P,)VP,=0. (42

This shows that the operation ®fin F" is represented by a
L, XL, matrix B', whose(s,s')th elementB')s ¢ is given by
(n"(9)|V|n'(s")). Moreover, from (39) only (B")ss1 and
(Bss1sfors=1,... L, -1 are nonzero elements and this
is a tridiagonal matrix with zero diagonal elements.

Next we reset the counter—r+1, choose another num-
ber state that is not contained i+ ... +F 1, and construct
(P,,B") by the earlier procedure This is repeated utft
+... +F =F. s fulfilled.

Finally, the total procedure generaté®,,B") for r
=1,2,... Ny, whereN, is the number of the block matrix

4. Total Sb procedure and the computational cost

We here summarize our Sprocedure. Figure 1 shows the
flowchart of one time step propagation, where “Uniof
denotes storing in memory all linearly independ@it of
L,=6 throughV{j (i=1,2,... M) and *HP evolution” op-
eration of one time step propagation with diagonal Hamil-
tonian HP.

Now we show that the computational cost for one time
step S} procedure depicted in Fig. 1 scales s 1*1P,
whereM is the number of binomials contained " andD
is the effective dimensioMN—-1 for N degrees of freedom
system with a numberl of conserved quantities. First, the
average size of block matriced,,), in V'(?)t is approximately

given by

Np

(Ly= 2 Li/Ny~ L¥P (45)
1

and thus effective number of the average matrix is estimated
by ~L/({L;). Hence, the average computational cost for
exr(V'('i‘)t)|<I)) via Eq. (44), is approximately estimated to be

016705-5
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-1
|@)=initial state 10

1073
£3]

g MWmWWwWWMWAW

ot “/WMMWWWWV\ANVWWMMM

10-5 MJ\/VV“\/VVVVVV\AANW/VV\A/V\A/\WVW\'W\AM/V\/V\N\MM

r=heo N O %% % d  B0

STe" |Z= t+ dt ¢
= exp(zD,)®" FIG. 2. AE as a function of timet. From the top dt
5.6 =274,275,276 277, 278 279 Fitting AE of dt<27% with Eq. (48)
T givesm=2. Eq.(48) is similarly confirmed up to sixth order SlI.
ifi=1 elsei=3i—1

energy cutoffE, to introduce computational state space
Feur Our scheme should then satisfy the following conver-
gencesi(1) With a fixed E;, mth order S| converges with
O(dt™) accuracy aslit— 0; and(2) After thisdt— 0 limit, the
wave function that is accurate i is given by taking the
limit of Eg — .

| HP evolution |

r=L...,N A. The dt convergence
i By using our method undeE. =32 with various time
7 ep(aD,)¥ stepsdt, wave functions are computed. The initial state is a
S, o normalized state if,, whose probabilities for the number
; states are random numbers from a uniform distribution and
ifi =M elsei=3+1 the phases are random numbers from the uniform distribu-

tion in[0, 27). Now we study the consistency of our method

FIG. 1. Total procedure of SIN, is the number of block ma- with the following three indicators of accuracy: energy fluc-

trices inV=V". See Eq,(44) for operationsS'®", exg(xD,), and tuationAE; difference to the exact wave functioh, change
S®', wherex=—iAt/(2f). caused by replacement df with dt/2, d..

1. Energy fluctuation

%(LOZ ~ LTL,D(LUD)ZZ LD, (46) Since all the parameters included in tli§MTRS Hamil-

r tonian(A=1) are constant, the expectation value for the total
Thus, the total computational cost required for thgi8IFig.  energy is conserved. Hence, we measure the accuracy of our
1 is ML™P [= Eq. (46) times M]. method, by the energy deviation from the initial expectation

Note that our numerical time propagation scheme prevalue
sented here is effective, compared to the other naive
schemes. For example, the time propagation schemes via di- AE=[(t; Shy, di{H[t; Sy, dt) — (t=0H[t=0)|,  (47)
agonalization of total Hamiltonian typically cost atL®.  where|t=0) denotes the initial wave function afig Sl dt)
This efficiency is because Sl is decomposed into small sizghe wave function at a timecomputed vianth order SI with
matrix multiplications whose dimensions are much less thagjt timestep.
state space dimensidn Figure 2 plotsAE againstt, for ¢* MTRS with three
degrees of freedortN=3), where second order schemes are
used withdt=2"4,275,276 277 278 279 This shows that after
the transient increase, eaalt remains nearly constant, with
small fluctuations around the average.dispproaches zero,

In this section, we show the accuracy of our method deAE approaches zero consistently with the order ofr§lfor
veloped in the previous section, usigd MTRS with x=1  sufficiently smalldt:
introduced in Sec. Il. ~ m

Recall that we have introduced two approximations into AB =A™, (48)
our method: one is the time steft and the other is the whereA is a constant depending on

IV. NUMERICAL RESULT: THE ACCURACY
AND CONVERGENCE
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[
102 | 107 g
1074}
1074}
~ 1081
"3—'10—6 L A J "g
~ 1081
\\
108 L \‘\ 4 10-10 |
~
.
10-10 | S 1 1072}
10~ . 2 2
-12 . 2 4 8
10712 3 — log, dt
—log, dt

FIG. 4. d, of ¢* MTRS with three degrees of freedom as a
FIG. 3. Logarithmic plot ofd, of first, second, and fourth order fynction ofdt. Symbolsll, ®, A, andO are results of first, second,
Sl with time t=50 againstit. Symbolsl, ®, and A are results of  fourth, and sixth order S, respectively. The solid lines are fitting
first, second, and fourth order S, respectively. The solid lines argynctionsd,=A,,dt™ via fitting parameterg\,, for m=1,2,4,6.
fitting functionsd; =A,,dt™ via fitting parameter#\,, for m=1,2,4.

) ] We have confirmed the usefulness of our methodpfn
We have thus numerically confirmed that energy consernyTRs with threedegrees of freedom. Howevet, is hard to
vation is recovered in thdt— 0 limit, consistently with the compute in systems with more than three degrees of free-
order of SI. The accuracy of the other observables is, howgom, pecause diagonalization of Hamiltonian matrix in Eq.

ever, not yet clarified. To elucidate this, we should proceed t952) becomes difficult in such a high dimensional system.
study the accuracy of the wave functions.

2. Difference from the exact wave function 3. Change of wave function induced by d¢dt/2
We use the difference, betweent; Sl,,,,dt) and the exact To study the accuracy of our method in more degrees of

wave function|t;exac}, as an indicator for the accuracy of freedom systems, we introduce the following indicator:
wave function

di = | [t;exach - [t; Sly, db), (49) d, = ||[t, S, dt) - t,s|m,%[>H. (54)
where vector nornjl |f)| is defined by/(f|f). For a timet
=Ndt, mth order SI has This measures the change of wave function induced atttime

U(t) =[S,V + to(dt™), (50) by the replacement ofit—dt/2. At a fixed timet, d, de-
pends ondt as

where U(t)=U(dt)N and U(dt)=S,(x)+O(dt™?) are used.
Multiplying both sides of Eq(50) by [t=0) leads d, = O(dt™ - (dt/2)™) = O(dt™), (55)

|t;exac} = |t; S, dt) + tO(dt™). (51)
. ) ) which is easily derived from Eq51).
From this, for a fixed, d, depends onit as follows: Let us first confirm Eq(55) through the numerical results
d; ~ O(dt™). (52  of ¢* MTRS yvith three degrees of freedom_. Figure 4 phits
_ . at t=50, againsdt. The dt-dependency55) is clearly seen
To confirm Eq.(52) numerically, we computét;Sly,,dt)  from first, second, fourth, and sixth order SI results in the

by applying our first, second, and fourth order methodto  figure, although sixth order Sl results stop decreasing,at

MTRS with three degrees of freedoiN=3), while [t;exact ~ ~1071° pecause of the round-off error.
is given by Having confirmed the usefulness of the indicatigy we
. now apply this consideration to the higher dimensional
. — EMtEls = , :
[t;exach = EE [E) e"=MXE[t=0), (53 systems. In Fig. 54, of second order SI foss* MTRS with

five, and seven degrees of freedom are plotted against time
where eigenenergf and the associated eigenstde are  stepdt, which shows cleadt-dependencé55). In addition,
computed via numerical diagonalization of Hamiltonian ma-we have confirmed the depender{&8) for the higher order
trix. Sl (m=4,6) in the same way.

Figure 3 plotsd; att=50 as a function ofit. This shows In this subsection, we have numerically confirmed that
that all orders of our scheme converge to the exact integratarur scheme, with a fixed computational Fock space, con-
asdt approaches zero. In addition, the theoretical estimatioverges to the accurate result as time step: 0, for multidi-
of Eq. (52) is numerically reproduced. These show the actuamensional systems with up to seven degrees of freedom,
utility of our numerical method. where the convergences are consistent with the Sl orders.
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The initial state has expansion coefficients that are uniformly
distributed aroundHy({n;})~10 ande is set as 10. This
Q\ clearly shows thatl; exponentially converges ds; ,— .
N Additionally, we have confrmed that, regardless of the details
10-2 | ™~ 4 " .
“\ of initial states,d; exponentially converges to zero even
5 ~& when ¢* MTRS have five seven degrees of freedoms.

103 | e ] In this section, we have numerically confirmed that our
N scheme exponentially converges to the accurate time evolu-
> tion in the limit of F,,,— F, for ¢* MTRS with up to seven
107 \Q\\ 1 degrees of freedom. Even for other systethsare expected
to converge atE.;—«, only if they classically have
, . , , . bounded equienergy surfaces in phase spaces at arbitrary to-
2 ¢ log, dt 6 8 tal energies. The convergence would depend on the details of

the system. For example, it could differ from exponential
FIG. 5. Plot ofd, for five, seven degrees of freedapt MTRS ~ convergence.
with second order SIm=2), againstdt. Symbolsx andO are for
five and seven degrees of freedom, respectively. The solid line is
~dt? for eye guidance.

107 F

10°%

V. CONCLUSION AND REMARK

In this paper, we have presented a method for computing
B. The E,, convergence quantum dynamics of PIOS. This model provides a basis of
crosscutting analysis for multidimensional low-energy dy-
namics from paradigmatic dynamical models, such as BPU-
and lattice*, to physical systems, such as intramolecular
) . - vibration redistribution and Bose-Einstein condensation. We
TO. QheCk this, we introduce an |nd_|catmt3, that ShO.WS have presented details of renormalization procedure for a
acquiring accuracy of wave funct_|on A, by gpproachmg_ PIOS model,¢* MTRS.
zero. First, note that, as we S"’TW In the_ previous subsection, Our method is based on the Sl scheme, and thus preserves
an approximate wave functioft; €, Eqy), in Fou With € ac- 0070 ere symmetry and unitarity. Furthermore, it has a
Cl_”acy IS compqtable 'by. using any.SI wave .fu_ncnonpractical advantage that higher order Sl is easily imple-
[t; Sk, dt, Ecy), which satisfies the following inequality: mented by several calls of Ssubroutines. This advantage is
[ [t: Sl dt,Equp — |t;exactEq | < e, (56) available even for the time-dependent Hamiltonian system,
) which is notable because this property is indispensable, es-
where argumentg,,, are appended to specify the computa-pecially for analysis of physical systems under external
.tional state state. Then, by usifige, E,», an indicatords is strong fields and/or random perturbations.
introduced as In order to effectively evaluate the Sl, our method takes
da=| |t; € Ecd) = |t; € Ecuet 1)) (57) advantage qf the blpck tridiagonality o_f binomial terms in the
polynomial interaction. The computational cost for one step
Namely, whend;< € are satisfied for sufficiently larg€.,  SI, is ~L™'P with the truncated space dimensidnand
then this guarantees the acquisition of a wave functioffin effective dimensionD. This method is more efficient for
with e-order accuracy multidimensional systems, compared to the existing method,
Let us numerically confirm this inequality. Figure 6 shows such as diagonalization method of Hamiltonian matrix and
d; of ¢* MTRS with three degrees of freedom, agaiigt.  SI-FFT method. Furthermore, this procedure grants an inher-
ent parallelism.

In the last section, the accuracy of our method is illus-
trated by removing two cutoffs, time step sideand trunca-
tion F of Fock spaceF. We have confirmed the conver-
gence below(1) For a fixedF.,, an error of wave function
converges aslt— 0, consistently with the order of S(2)

The computed wave function, accurate,, converges to
the correct wave function itF, as F. approaches. These
show that we have actually constructed an accurate numeri-
cal scheme for computing quantal dynamics of multidimen-
sional PIOS models.
3 Finally, we here add a remark on the applicability of our
10-6 , ) , ) , , , , method on eigenvalue problem. Repeated operatioiftbf
2z A% % B N 3t2 4 3% 3B 4 =H exp(—B8H) makes any state vector converge to the eigen-
o state that has an eigenenergy nearest to energy fof a
FIG. 6. d3 vs Eg. The solid line is a fitted function HamiltonianH with nonnegative eigenenergy. Note that op-
expla+bx) with a=5.09 b=-0.45. eration exg-BH) is efficiently computable by using our

We now confirm that computed wave functions with our
method approach correct wave functionsAnin the limit of
cutoff parameteE,— o (Fei— F).
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time-propagation method with replacement of time withphysical quantitied18,19. We hope that this method will
imaginary time. We have thus obtained a numerical schemenprove our understandings of multidimensional quantal dy-
for eigenvalue problem that enables us to compute the eigemamics.

state with an eigenenergy adjacent to an arbitrary energy. For

(quasiydegenerate eigenenergy systems, standard tech-

nigues, such as the Rayleigh-Ritz methidd], would be ACKNOWLEDGMENTS

useful to accelerate the convergence. We further expect that

our method is directly applicable for recently developed, so- The author is grateful to A. Shudo and A. Tanaka for their
phisticated time-domain approaches to calculate variousnlightening discussions and continuous encouragement.
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